While 4G technology made possible high-speed mobile browsing and wearable connectivity, 5G promises that those wearables will become even more prominent, smaller, and more efficient. That goes for ones already in existence, like smartwatches and health trackers, and those still on the drawing board (like, believe it or not, tattooables). 

How that happens comes down to 5G’s accessibility to the cloud, its lower latency, and its speed, which can theoretically be 100 times faster than 4G

Real-time data transfer will now be possible, and some experts believe that in the not-too-distant future, virtually everything we wear (clothing, shoes, contact lenses, even sensors placed under the skin to track health data) will transform us into walking, talking connected devices.

Certainly skeptics remain, but Fortune cites International Data Corporation projections indicating that wearable sales will reach $49.4 billion this year, and soar to $69.8 billion by 2024. Sanyogita Shamsunder, Verizon’s vice president of 5G Labs and Innovation, told Fortune that ‘2024 will in fact serve as an “inflection point,” as that will be the year that medical sensors will become commonplace.

Already available, Fortune notes, are smart glasses, smart earbuds (a.k.a. “hearables”) and yoga pants that make those wearing them aware if their yoga technique leaves something to be desired. 

And those tattooables? While still in development, they are expected to be constructed of wafer-thin electric mesh, according to Fortune, which will enable them to store data and do things like deliver drugs. 

The reason wearables are expected to shrink in size, according to TechRadar, is that they will no longer need physical space to store data; 5G can simply zip data right to the cloud. Instead, wearables of the near future will consist of ultrathin sensors, and little else.

An increase in sensors and a decrease in size is precisely what will cement wearables as part of the Internet of Things. Until now, we’ve mostly thought of wearables as items such as smartwatches that the user wears on their wrist. But these sensor-packed devices could just as easily be connected to objects rather than people to read and process data in real-time.

Consumers may also be happy to know that relieving some of the processor’s job means that a device’s battery will be more efficient. The ability to charge wirelessly within a wider range — up to 30 cm away — will allow devices to charge without cables or docks, even when in use.

All of this will take time, however. AT&T, Verizon and T-Mobile have all begun rolling out 5G, but it will be years before most of the country, let alone the world, has coverage. Then, manufacturers must create devices that harness the power of 5G.

In addition, there are privacy concerns about sensitive personal data being widely circulated, location data being easily accessible, and even foreign manufacturing threatening national security. 

Such matters give one pause, to be sure. But for now, it’s full speed ahead for 5G, at 100 times the pace of the existing technology. While there are potential hurdles, there are also vast possibilities that make 5G’s future look extremely promising.