Can we create smart thermal clothing?
Even with layers upon layers of thick clothing, there is only so much regular fabrics can do to fight the cold. So how can we make our clothes do more to keep us warm? While it may seem like a less obvious avenue for technological advancement, the use of lightweight and conductive fibers to create smart thermal clothing have the potential to create new breakthroughs for insulation. We are already seeing promising advancements in smart thermal clothing, and it has the potential to much more effectively protect people from cold and even detect the onset of cold-related conditions, such as hypothermia or frostbite.
Smart thermal clothing entered the tech landscape years ago, but many of the developed incarnations at the time were bulky and inefficient, using invasive and uncomfortable wires or large batteries. For smart thermal clothing, the ultimate goal is to be completely unobstructive, regulating a person’s temperature with little to no inconvenience. As we continue to make advancements in specific lightweight fibers, such as ones made with graphene, we are beginning to see truly viable forms of smart thermal clothing.
SKIINCore is one such clothing range that boasts effective smart thermal clothing. Their products, which include a thin long-sleeve top and leggings, utilize a conductive yarn that is sandwiched between a sweat-wicking synthetic inner layer and a heat-trapping wool outer layer. It uses a small non-intrusive 56g battery for heating power, able to keep the wearer warm for up to eight hours. Users can adjust temperatures with a smartphone app, or let the “smart” in smart thermal clothing shine by allowing the clothes to automatically adjust heat levels based on environment and body temperatures.
Another example of exemplary smart thermal clothing comes from Directa Plus, an Italian company that makes graphene-based products. They recently launched two textile collections utilizing their Graphene Plus (G+) material, made from a patented Pristine Graphene Nanoplatelet design. Their G+ membranes can be applied to a flexible range of clothing, including sportswear, citywear or workwear. The use of graphene-based materials increase heat conductivity and spreads the heat evenly throughout the material to regulate overall body temperature. The G+ membrane also amplifies electrical conductivity, allowing for accurate transmission of data from the body.
With such advancements in smart thermal clothing, and smart clothes in general becoming an increasingly popular trend, the future for these heat-regulating garments looks bright. Already we are seeing effective smart thermal clothing options for mainstream consumers. But the utilization of lightweight fibers like graphene and other inconspicuous conductive materials in clothing still have much room for growth, and it seems that very soon in the future we will see smart thermal clothing become truly intelligent.