3D printing is not just a matter of bigger and better, but also smaller and smaller. While such printers have already reached the point where they can produce items as large as houses and as complex as gastrointestinal system models, they can now recreate or reproduce objects that cannot be seen with the naked eye.

3D nanoprinting, as it’s called, involves using a focused electron beam to produce nanostructures — i.e., structures of molecular dimensions. This technique is invaluable in every field from medicine to electronics, and even in such areas as food science.

So how did we get here?

Until the advent of 3D printing, the only way to make objects ranging from ceramic mugs to carburetors was to create a mold of an object then fill the mold with the substance the object was to be made from. Creating the molds is prohibitively expensive, so the more you produce of a single object, the more the price of that object goes down. 

One problem with this, however, is that any imperfections in the mold will result in an imperfection in the thousands, if not millions of items that mold produces. Any changes you want to make in the item also require the creation of a brand new mold.

3D printing, on the other hand, prints an object in hundreds and hundreds of thin layers that are created with thin strands of heated plastic. Heating the plastic liquifies it just enough that each layer will bond with the preceding layer. 

More expensive and elaborate 3D printers are available that can print with almost any type of materials that can be heated and softened, such as metal but for the most part, 3D printing works by shooting very precise, thin strands of polymers or plastics in streams that bond together to create a single object. This offers the opportunity for changes to be made with each new printing and even to create a single, unique object without a mold.

There are, however, several challenges to printing on a microscopic level. Coming up with a device capable of shooting a microscopic strand of polymer is one but then shaping that polymer into a usable object is another. Recent advances have developed a system using negative polarity to attract one strand of polymer to another. 

The implications of nanotechnology are almost limitless and every one of those applications will eventually need to be mass-produced. Imagine tiny armies of nanobots that can be absorbed directly through the skin that can be programmed to seek out and destroy cancer cells, leaving healthy cells intact or microstructures that can replace damaged tissue in a liver or kidney.

While medical applications may be among the most exciting applications for nanotechnology, its everyday uses are of interest as well. The smaller the tech that powers your electronic devices, for example, the smaller the devices themselves can be. Imagine an entire smartphone being reduced to the size of a disposable microdot you can simply stick onto your inner ear.

In addition, nanotechnology is being used to create smart coatings for windows that can lighten or darken to allow in a precise amount of light or even shade a certain area of a large window where the light is the strongest. All of these applications, however, will require millions of individual nanostructures to be created, which will create a greater and greater demand for 3D nanoprinting.

So onward we go, to a frontier that is becoming ever smaller, ever more complex — and yet, ever more promising. 3D nanoprinting enables us to go places we might not have ever visited before, and to improve structures and processes in ways that could have only been imagined in the past. It has been said that the future stretches out in front of us, as far as the eye can see. Actually, it goes well beyond that, to places that can’t even be viewed with the naked eye.