3D Nanoprinting: Boldly Exploring a New, Albeit Smaller, Frontier

3D Nanoprinting: Boldly Exploring a New, Albeit Smaller, Frontier

3D printing is not just a matter of bigger and better, but also smaller and smaller. While such printers have already reached the point where they can produce items as large as houses and as complex as gastrointestinal system models, they can now recreate or reproduce objects that cannot be seen with the naked eye.

3D nanoprinting, as it’s called, involves using a focused electron beam to produce nanostructures — i.e., structures of molecular dimensions. This technique is invaluable in every field from medicine to electronics, and even in such areas as food science.

So how did we get here?

Until the advent of 3D printing, the only way to make objects ranging from ceramic mugs to carburetors was to create a mold of an object then fill the mold with the substance the object was to be made from. Creating the molds is prohibitively expensive, so the more you produce of a single object, the more the price of that object goes down. 

One problem with this, however, is that any imperfections in the mold will result in an imperfection in the thousands, if not millions of items that mold produces. Any changes you want to make in the item also require the creation of a brand new mold.

3D printing, on the other hand, prints an object in hundreds and hundreds of thin layers that are created with thin strands of heated plastic. Heating the plastic liquifies it just enough that each layer will bond with the preceding layer. 

More expensive and elaborate 3D printers are available that can print with almost any type of materials that can be heated and softened, such as metal but for the most part, 3D printing works by shooting very precise, thin strands of polymers or plastics in streams that bond together to create a single object. This offers the opportunity for changes to be made with each new printing and even to create a single, unique object without a mold.

There are, however, several challenges to printing on a microscopic level. Coming up with a device capable of shooting a microscopic strand of polymer is one but then shaping that polymer into a usable object is another. Recent advances have developed a system using negative polarity to attract one strand of polymer to another. 

The implications of nanotechnology are almost limitless and every one of those applications will eventually need to be mass-produced. Imagine tiny armies of nanobots that can be absorbed directly through the skin that can be programmed to seek out and destroy cancer cells, leaving healthy cells intact or microstructures that can replace damaged tissue in a liver or kidney.

While medical applications may be among the most exciting applications for nanotechnology, its everyday uses are of interest as well. The smaller the tech that powers your electronic devices, for example, the smaller the devices themselves can be. Imagine an entire smartphone being reduced to the size of a disposable microdot you can simply stick onto your inner ear.

In addition, nanotechnology is being used to create smart coatings for windows that can lighten or darken to allow in a precise amount of light or even shade a certain area of a large window where the light is the strongest. All of these applications, however, will require millions of individual nanostructures to be created, which will create a greater and greater demand for 3D nanoprinting.

So onward we go, to a frontier that is becoming ever smaller, ever more complex — and yet, ever more promising. 3D nanoprinting enables us to go places we might not have ever visited before, and to improve structures and processes in ways that could have only been imagined in the past. It has been said that the future stretches out in front of us, as far as the eye can see. Actually, it goes well beyond that, to places that can’t even be viewed with the naked eye.

What 5G Will Do For Wearables

What 5G Will Do For Wearables

While 4G technology made possible high-speed mobile browsing and wearable connectivity, 5G promises that those wearables will become even more prominent, smaller, and more efficient. That goes for ones already in existence, like smartwatches and health trackers, and those still on the drawing board (like, believe it or not, tattooables). 

How that happens comes down to 5G’s accessibility to the cloud, its lower latency, and its speed, which can theoretically be 100 times faster than 4G

Real-time data transfer will now be possible, and some experts believe that in the not-too-distant future, virtually everything we wear (clothing, shoes, contact lenses, even sensors placed under the skin to track health data) will transform us into walking, talking connected devices.

Certainly skeptics remain, but Fortune cites International Data Corporation projections indicating that wearable sales will reach $49.4 billion this year, and soar to $69.8 billion by 2024. Sanyogita Shamsunder, Verizon’s vice president of 5G Labs and Innovation, told Fortune that ‘2024 will in fact serve as an “inflection point,” as that will be the year that medical sensors will become commonplace.

Already available, Fortune notes, are smart glasses, smart earbuds (a.k.a. “hearables”) and yoga pants that make those wearing them aware if their yoga technique leaves something to be desired. 

And those tattooables? While still in development, they are expected to be constructed of wafer-thin electric mesh, according to Fortune, which will enable them to store data and do things like deliver drugs. 

The reason wearables are expected to shrink in size, according to TechRadar, is that they will no longer need physical space to store data; 5G can simply zip data right to the cloud. Instead, wearables of the near future will consist of ultrathin sensors, and little else.

An increase in sensors and a decrease in size is precisely what will cement wearables as part of the Internet of Things. Until now, we’ve mostly thought of wearables as items such as smartwatches that the user wears on their wrist. But these sensor-packed devices could just as easily be connected to objects rather than people to read and process data in real-time.

Consumers may also be happy to know that relieving some of the processor’s job means that a device’s battery will be more efficient. The ability to charge wirelessly within a wider range — up to 30 cm away — will allow devices to charge without cables or docks, even when in use.

All of this will take time, however. AT&T, Verizon and T-Mobile have all begun rolling out 5G, but it will be years before most of the country, let alone the world, has coverage. Then, manufacturers must create devices that harness the power of 5G.

In addition, there are privacy concerns about sensitive personal data being widely circulated, location data being easily accessible, and even foreign manufacturing threatening national security. 

Such matters give one pause, to be sure. But for now, it’s full speed ahead for 5G, at 100 times the pace of the existing technology. While there are potential hurdles, there are also vast possibilities that make 5G’s future look extremely promising.

How Red Wine, Coffee, and Black Tea Can Help Create Better Wearables

How Red Wine, Coffee, and Black Tea Can Help Create Better Wearables

The problem with wearable sensors over the years has been one of durability. When repeatedly folded and bent, they developed micro-cracks that curtailed their conductivity.

Nothing a little red wine won’t fix. Or coffee. Or black tea.

The tannic acid present in those liquids was found by a team of scientists at the University of Manchester, England, to be crucial to improving the mechanical properties of wearables.

The team had previously used the same idea to develop artificial hands and capacitive breath sensors. Prior to the discovery of tannic acid as a useful tool in the creation of wearable technology, there had been many failures due to a lack of effective resources.

Tannic acid is the reason it is so difficult to remove red-wine stains from fabric: It firmly adheres to the material on the surface of the fiber. Such adhesion is, team leader Dr. Xuqing Liu, leader told Phys.org, “exactly what we need for durable, wearable, conductive devices.”

While scientists have been purchasing tannins to create these technological items, they tested fabrics by soaking them in coffee and black tea. They found that these liquids had the same effect on the fabrics that red wine did. This assured them that the adhesive properties of black coffee and tea are just as effective.

Using that knowledge, scientists are hopeful that in the near future they will be able to create wearable technology devices that are not only more comfortable but also longer-lasting and more cost-efficient.

Through the use of red wine, black tea and coffee, developers can create devices that, instead of being made of nylon, are made of cotton instead. The technology that is enabled by the use of tannic acid means that a device’s circuits will be attached to the surface of the fabric. This replaces the previous rigid circuit board with one that the wearer of the device isn’t even likely to notice.

While the technology industry is changing in many ways, wearable technology is among this and next year’s largest aspects. It has been predicted that sales of wearable technology around the world are set to reach a monetary value of $27 billion by 2022.

Yesterday’s wearable devices used conductive yarn. However, the coating on this material often peeled off, rendering it useless. Substituting tannic acid eliminates this problem.

Only time will tell what further research on this subject uncovers. But this latest breakthrough represents a quantum leap forward, in that it improves the durability of these widely used sensors. Moreover, it shows what can be accomplished through an outside-the-box approach — how a problem can be solved, if only it is approached from a different angle.

How Can Cloud Storage Deal With Security Issues?

How Can Cloud Storage Deal With Security Issues?

As detailed by Chris Pedigo of Lacework.com, 2019 saw some dark days for the cloud. While companies storing information in such data centers usually find that method cost-effective and efficient, the exceptions were notable, and troubling.

In April, 540 million Facebook records were exposed via Cultura Colectiva, a Mexican content provider. In May, Instagram saw 49 million records laid bare. July brought the Capital One breach, in which 80,000 bank account numbers (and 140,000 social security numbers) were exposed. And September saw the Autoclerk breach, where travel reservations were hacked, including those of military personnel involved with sensitive operations.

As a result, businesses are increasingly turning to blockchain to secure their cloud storage. An integral part of the larger trend toward Blockchain as a Service (BaaS), the distributed security makes this decentralized ledger far less vulnerable to hackers than the centralized servers preferred by most companies in the past.

The reasons have been well-documented. There are the cryptographic hashes unique to each block, which results in the chain’s immutability — i.e., none of the blocks can be modified without altering the whole chain. There is the peer-to-peer network, to which all data is distributed. Because it is not stored by any single entity but rather a node of users, the information within the chain cannot be changed by an outside actor. That ties into another security measure — the consensus protocol, under which all users need to verify a new block.

Finally, there is proof-of-work (PoW), the algorithm used to verify the transactions that lead to the creation of new blocks in the chain.

Again, such security is one of the great appeals of blockchain, and spending on the technology, which has tripled since 2017, is expected to reach $16 billion by 2023. Healthcare in particular is expected to reap the benefits of this technology, as blockchain spending in that sector is projected to reach $1.4 billion by 2024.

At present, however, healthcare lags behind financial services, manufacturing and energy and utilities in the industries that executives view as being most advanced in blockchain development, per a Business Insider survey. Forty-six percent of those polled believe that financial services have made the greatest strides in that area, compared to 12 percent for manufacturing, 12 percent for energy and utilities and 11 percent for healthcare. (Another eight percent view governmental use as being the most advanced.)

But it is expected that there will be precious few industries that won’t be impacted by this technology in the years to come. One report listed 58 possible areas in which blockchain can be applied, ranging from voting to ride-sharing to advertising.

The conclusion is a simple one: A decentralized storage system like blockchain can do for information what it has been doing for cryptocurrencies, keeping it safe and sound, and accessible only to those on the chain in question. The trend toward blockchain will only continue in the years ahead, and cut across all sectors.

Understanding Why Blockchain Transactions are Reliable

Understanding Why Blockchain Transactions are Reliable

Blockchain, once associated solely with the cryptocurrency bitcoin, has since been found to have many uses, with the potential for many more.

One of the foremost examples of digital ledger technology (DLT), blockchain can solidify supply chains and secure elections. It can make real estate transactions easier, and medical records more accessible. It can facilitate data transfers and ensure the smooth operation of the Internet of Things.

But why? What makes it so good, and why is there the expectation that it could do so much more? 

In a word, security. The folks at MIT spelled it out in layman’s terms, while using bitcoin, widely considered the first digital currency, as an example. All of bitcoin’s transactions are stored in the ledger, with multiple copies shared to a network of computers, or nodes. These nodes, which are operated by so-called miners, determine the validity of every new transaction. In the case of bitcoin, for instance, they check to see that each miner seeking to complete a transaction using that particular crypto does in fact have one to spend. Valid transactions are then added to the chain as blocks.

Every block has its own cryptographic fingerprint (called a hash), and every completed transaction does so courtesy of a unique process known as a consensus protocol — i.e., the agreement between all the other nodes. Both those elements should at least theoretically make such transactions tamperproof.

The MIT crew does raise questions about how secure the network really is, and provides examples of instances when hot wallets or smart contracts, two DLT staples, have been hacked. But generally blockchain, and DLT in general, has been well-received.

Consider the following examples:

  • Supply chain management: Using an online ledger removes documents, and thus inefficiency, from the equation. Consider the example of the shipment of flowers from Kenya to Rotterdam that required no fewer than 200 documents to complete. That’s a thing of the past with blockchain.
  • Secure elections: It could potentially reduce fraud or, for that matter, the need to so much as travel to a polling place. In 2016 West Virginia became the first state to use DLT-based technology in a primary, a possible sign of things to come.
  • Real estate transactions: With supply chains, there’s no need for hard copies anymore. All of that now exists in the blockchain network, and all parties have secure access. This is true for real estate transactions, and all manner of other transactions
  • Medical records: Electronic medical records (EMRs) are already widely used, but those stored in a blockchain would ensure the patient easier access and greater privacy, the latter of which is essential under HIPAA requirements.
  • Data transfers: The cryptocurrency IOTA, believing most corporate data goes unused, has developed a DLT-based data marketplace that would allow companies to sell or share data, the idea being that it would spark innovation.
  • IoT management: The world of interconnected devices — smart thermostats, lights, refrigerators, security systems, et al. — is ever-evolving, and in 2017 Cisco Systems moved to trademark a blockchain that would monitor the various devices for trustworthiness.

Clearly there is more to come. Blockchain will disrupt a great many sectors in the years to come, and we have its reliability and security to thank.