Predicting Natural Disasters With Your Smartphone

Predicting Natural Disasters With Your Smartphone

As of April 2021, there were an estimated 3.8 billion smartphone users in the world, or nearly half the global population of 7.8 billion. That has implications not only for communication and entertainment, but also safety. 

That has been shown during the coronavirus pandemic, as nations like Germany and Ireland have used contact tracing apps to great effect. (That is not true in the U.S., however. Such apps have largely gone unused, in no small part because of privacy concerns.)

Still, smartphone apps have shown potential to keep users safe in other ways, one being in their ability to predict natural disasters. Such events as earthquakes, tsunamis, hurricanes, floods, wildfires, heatwaves, and droughts kill an average of 60,000 people a year. Scientists, as a result, have been extremely interested in developing mechanisms that not only prevent these disasters but also keep humankind at arm’s length from potential negative effects.

Smartphones come with integrated and highly precise sensor technology designed to assess environmental conditions like humidity, temperature, and even ground vibrations. For meteorologists to make sense of such data, they need a huge volume of this information. 

Thanks to the Internet of Things (IoT) and blockchain, engineers can collect a treasure trove of data; scientists can consequently use this data to make accurate predictions on prospected weather patterns. This technology can prove crucial in helping predict the potential occurrence of heavy rains and flash floods within an area, for example. 

The good thing with such data is that it is accurate and available at a moment’s notice. Smartphones come equipped with GPS technology which can help such meteorologists to determine the particular area affected accurately.

An additional convenience offered by smartphones is their ability to disseminate information as accurately, precisely, and timely as possible. In case, for instance, meteorologists accurately predict the occurrence of natural disasters within an area, they can immediately disseminate cautionary information to the residents, warning them of impending floods, heatwaves, fires, or even hurricanes. Such information is crucial in helping to reduce and manage the adverse effects of natural disasters.

The benefits that smartphones provide in the entire weather industry are further enhanced by the fact that these devices can remotely transmit data through satellites. Thanks to blockchain technology, the data can be instantly processed and even reliably used to make predictions through artificial intelligence and machine learning. The observed weather patterns can be compared to previous occurrences to predict impending disasters accurately.

For instance, if the data shows characteristic patterns in temperatures, atmospheric tides, and atmospheric pressure, then this information can be used to predict the occurrence of hurricanes. The consistent relaying of smartphone data thereafter can be used to determine the prospected path of such a developing hurricane, thereby offering advance cautionary information to the public.

What Lies Ahead for Blockchain?

What Lies Ahead for Blockchain?

Blockchain will forever be tied to the cryptocurrency bitcoin, and understandably so. That, however, is rapidly changing. CB Insights pointed out in April 2020 that over the three previous years, worldwide spending on blockchain solutions had nearly tripled, and predicted that annual outlays would reach $16 billion by 2023. That same organization went on to list no fewer than 58 businesses the technology could impact — everything from banking (naturally) to ride sharing to entertainment.

This is far from a novel viewpoint. Back in 2019, Computerworld predicted that decentralized ledger technology (DLT) such as blockchain exhibited the same potential once shown by TCP/IP, the very foundation of the world wide web. And indeed, by the end of 2020 top organizations in virtually every sector had implemented DLT.

Here are four sectors in which blockchain could make a particularly significant difference:

  • Elections: It is not an exaggeration to say that some of the furor surrounding the 2020 U.S. presidential election could have been avoided by using blockchain — that fraud claims would have been a non-starter if e-voting were in place. It is safe, secure and can be done from home. It allows for accurate tracking and counting, as votes cast on a blockchain leave an audit trail. And the thing is, it has already been tried on a smaller scale, as West Virginia used it in a 2016 primary. In addition, a blockchain platform developed by an organization called Follow My Vote was used in a presidential election in Sierra Leone in 2018, and deemed accurate.
  • Healthcare: There are those who wonder if healthcare might not be the ultimate use case for blockchain, given issues like patient misidentification and providers’ inability to safely share data. Another thing to consider is the sheer volume of data that must be processed, particularly during a healthcare crisis like the coronavirus pandemic. Any of these matters can result in errors and unfavorable outcomes, but they can be avoided with blockchain technology. One prominent example is the manner in which electronic medical records can be accessed by multiple parties. In addition, a blockchain startup called Hu-manity has partnered with IBM on a ledger that according to a news release will enable patients to “claim property rights to their personal data,” allowing them to decide who sees it, and when.
  • Real Estate: In 2017 the startup ShelterZoom became the first company to introduce a blockchain-based platform in the real estate space, one that according to a release at the time allows all parties “unprecedented speed, convenience, security and transparency” from beginning to end of a transaction. (And note that transparency is a particular pain point in this sector.) Other companies, like Propy and Ubitquity, have followed ShelterZoom’s lead, well aware that in addition to the aforementioned advantages, blockchain solutions greatly reduce the need for paper record-keeping.
  • Supply Chain Management: Blockchain enables any party in the supply chain management sector to track a product throughout its journey, which Deloitte notes brings with it many advantages. A manufacturer can, for instance, ensure that its standards are met. Efficiency is improved. Monetary and material losses are decreased. There is less paperwork. Ultimately the consumer benefits from a better product, and one that is delivered in a more timely fashion. That in turn builds brand loyalty.

In short, the sky would appear to be the limit for blockchain, in any number of sectors. Far from being simply a cryptocurrency platform, it looms as a game-changing technology that allows for greater efficiency and security.

How Can Cloud Storage Deal With Security Issues?

How Can Cloud Storage Deal With Security Issues?

As detailed by Chris Pedigo of Lacework.com, 2019 saw some dark days for the cloud. While companies storing information in such data centers usually find that method cost-effective and efficient, the exceptions were notable, and troubling.

In April, 540 million Facebook records were exposed via Cultura Colectiva, a Mexican content provider. In May, Instagram saw 49 million records laid bare. July brought the Capital One breach, in which 80,000 bank account numbers (and 140,000 social security numbers) were exposed. And September saw the Autoclerk breach, where travel reservations were hacked, including those of military personnel involved with sensitive operations.

As a result, businesses are increasingly turning to blockchain to secure their cloud storage. An integral part of the larger trend toward Blockchain as a Service (BaaS), the distributed security makes this decentralized ledger far less vulnerable to hackers than the centralized servers preferred by most companies in the past.

The reasons have been well-documented. There are the cryptographic hashes unique to each block, which results in the chain’s immutability — i.e., none of the blocks can be modified without altering the whole chain. There is the peer-to-peer network, to which all data is distributed. Because it is not stored by any single entity but rather a node of users, the information within the chain cannot be changed by an outside actor. That ties into another security measure — the consensus protocol, under which all users need to verify a new block.

Finally, there is proof-of-work (PoW), the algorithm used to verify the transactions that lead to the creation of new blocks in the chain.

Again, such security is one of the great appeals of blockchain, and spending on the technology, which has tripled since 2017, is expected to reach $16 billion by 2023. Healthcare in particular is expected to reap the benefits of this technology, as blockchain spending in that sector is projected to reach $1.4 billion by 2024.

At present, however, healthcare lags behind financial services, manufacturing and energy and utilities in the industries that executives view as being most advanced in blockchain development, per a Business Insider survey. Forty-six percent of those polled believe that financial services have made the greatest strides in that area, compared to 12 percent for manufacturing, 12 percent for energy and utilities and 11 percent for healthcare. (Another eight percent view governmental use as being the most advanced.)

But it is expected that there will be precious few industries that won’t be impacted by this technology in the years to come. One report listed 58 possible areas in which blockchain can be applied, ranging from voting to ride-sharing to advertising.

The conclusion is a simple one: A decentralized storage system like blockchain can do for information what it has been doing for cryptocurrencies, keeping it safe and sound, and accessible only to those on the chain in question. The trend toward blockchain will only continue in the years ahead, and cut across all sectors.

Understanding Why Blockchain Transactions are Reliable

Understanding Why Blockchain Transactions are Reliable

Blockchain, once associated solely with the cryptocurrency bitcoin, has since been found to have many uses, with the potential for many more.

One of the foremost examples of digital ledger technology (DLT), blockchain can solidify supply chains and secure elections. It can make real estate transactions easier, and medical records more accessible. It can facilitate data transfers and ensure the smooth operation of the Internet of Things.

But why? What makes it so good, and why is there the expectation that it could do so much more? 

In a word, security. The folks at MIT spelled it out in layman’s terms, while using bitcoin, widely considered the first digital currency, as an example. All of bitcoin’s transactions are stored in the ledger, with multiple copies shared to a network of computers, or nodes. These nodes, which are operated by so-called miners, determine the validity of every new transaction. In the case of bitcoin, for instance, they check to see that each miner seeking to complete a transaction using that particular crypto does in fact have one to spend. Valid transactions are then added to the chain as blocks.

Every block has its own cryptographic fingerprint (called a hash), and every completed transaction does so courtesy of a unique process known as a consensus protocol — i.e., the agreement between all the other nodes. Both those elements should at least theoretically make such transactions tamperproof.

The MIT crew does raise questions about how secure the network really is, and provides examples of instances when hot wallets or smart contracts, two DLT staples, have been hacked. But generally blockchain, and DLT in general, has been well-received.

Consider the following examples:

  • Supply chain management: Using an online ledger removes documents, and thus inefficiency, from the equation. Consider the example of the shipment of flowers from Kenya to Rotterdam that required no fewer than 200 documents to complete. That’s a thing of the past with blockchain.
  • Secure elections: It could potentially reduce fraud or, for that matter, the need to so much as travel to a polling place. In 2016 West Virginia became the first state to use DLT-based technology in a primary, a possible sign of things to come.
  • Real estate transactions: With supply chains, there’s no need for hard copies anymore. All of that now exists in the blockchain network, and all parties have secure access. This is true for real estate transactions, and all manner of other transactions
  • Medical records: Electronic medical records (EMRs) are already widely used, but those stored in a blockchain would ensure the patient easier access and greater privacy, the latter of which is essential under HIPAA requirements.
  • Data transfers: The cryptocurrency IOTA, believing most corporate data goes unused, has developed a DLT-based data marketplace that would allow companies to sell or share data, the idea being that it would spark innovation.
  • IoT management: The world of interconnected devices — smart thermostats, lights, refrigerators, security systems, et al. — is ever-evolving, and in 2017 Cisco Systems moved to trademark a blockchain that would monitor the various devices for trustworthiness.

Clearly there is more to come. Blockchain will disrupt a great many sectors in the years to come, and we have its reliability and security to thank.